Unit 4: The Periodic Table and Trends

Big Ideas:

The modern periodic table is organized based on atomic number and repeating trends. Trends are predicatable and can be explained by using atomic structure and Coulomb's Law.

Monday	Tuesday	Wednesday	Thursday	Friday

4-2 Table of Contents Unit 4

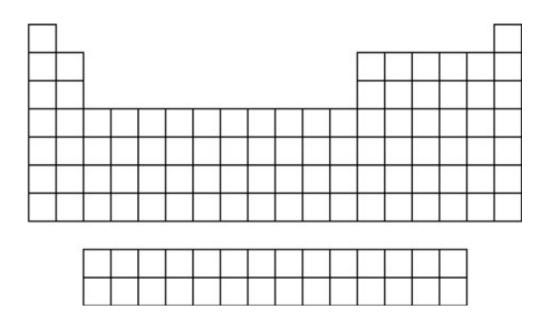
Learning Objective	Page <u>Title</u>
	4-1 Unit 4: The Periodic Table and Trends
	4-2 Table of Contents Unit 4
	4-3 Read/Write: POGIL Coulombic Attaction
	4-4 Structure of the Periodic Table
	4-5 Coulombs Law, Effective Nuclear Force (Zeff)
	4-6 Periodic Trends
	4-7 Periodic Trends Continued
	4-8 Successive Ionization Energies
	4-9 Explaining Periodic Trends—Atomic Radius
	4-10 Explaining Periodic Trends—Ionization Energy
	4-11 Exceptions to Trends
	4-12 Summary

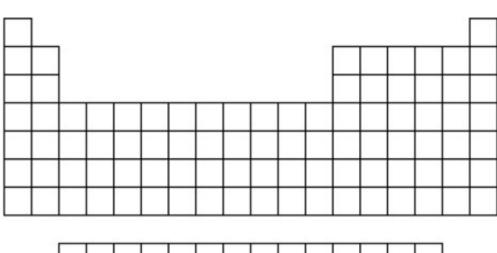
	Learning Objectives for Periodic Table and Trends Unit		
D1	I understand how the periodic table is arranged and can identify and describe trends within groups and periods.		
D2	I can use Coulomb's Law and atomic structure principles to explain WHY trends follow certain patterns		

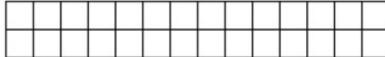
Skills From Previous Units You Need

I can determine the number of valence electrons for an atom.

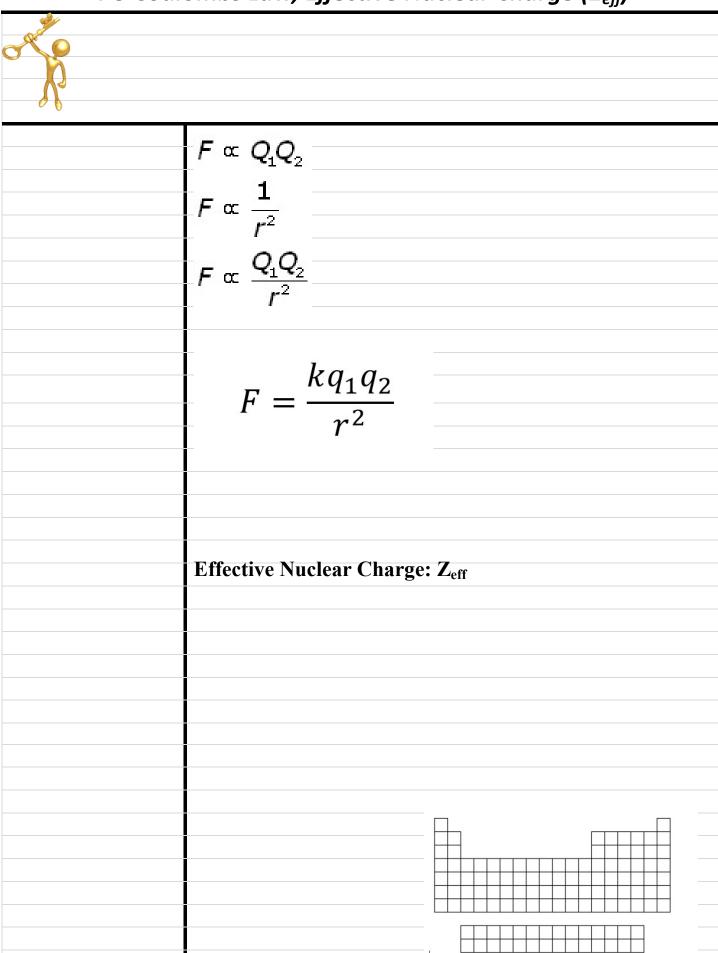
I can determine the charge of common ions.

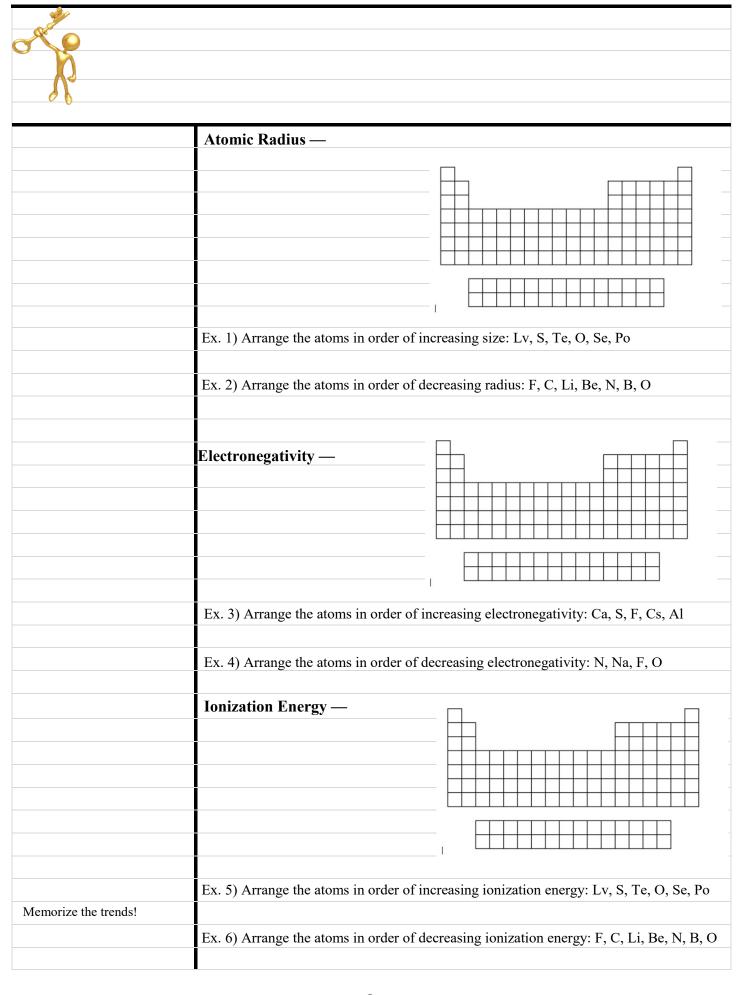

I can write the electron configuration for an element.


4-3 POGIL Read/Write: Coulombic Attraction


	Summarize the KEY points from the activity here. Use complete sentences.			

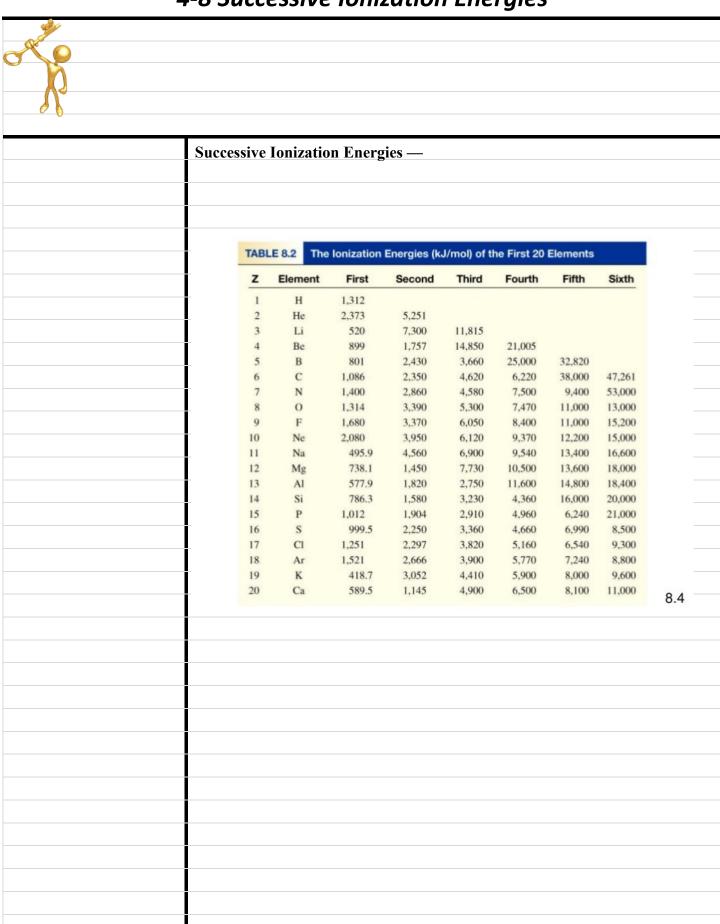
4-4 Structure of the Periodic Table




Memorize:

Metals, Non-Metals, Metalloids, Alkali Metals, Alkaline Earth Metals, Halogens, Noble Gases, Transition Metals, Inner Transition Elements, Rare Earth Elements, Valence Electrons,

4-5 Coulombs Law, Effective Nuclear Charge (Z_{eff})


4-6 Periodic Trends

4-7 Periodic Trends Continued

$-V_{-}$						
V						
	Ionic Radiu					
	Tonic Radii	1s —				
	Cations are		than neutral a	toms they are for	med from be-	
				ions are		
				ecause they		
	Isoelectron	ic Series —	_			
	150clecti oli					
	<u></u>					
	 		• • • .			
				nic with the follo		
	Na ⁺	Rb ⁺	Sr ²⁺	Br ¹⁻	Te ²⁻	
	Aluminum i	on	sulfur io	n (sulfide)		
	E-2) A		. 11		· · · · · · · · · · · · · · · · · · ·	
			ollowing ions i	n order of increa	asing radius	
	Cl ¹⁻ K ⁺	— Ca⁻				
	! 					
	_					

4-8 Successive Ionization Energies

4-9 Explaining Periodic Trends—Atomic Radius

Tips:	Explaining <i>why</i> atoms follow a trend is not the same as stating <i>what</i> the trend is. For example, if you were asked to explain <u>why</u> sodium is a larger atom than lithium and you stated that "sodium is larger because it's beneath lithium on the periodic table" you would get zero credit.
How to answer trend questions	Two factors are used to explain WHY atoms follow the trends:
1) Determine if it's a	1) Coulombic attraction: used for explaining trends within period. (Z_{eff})
group or period trend question.	2) Energy levels: uses for explaining trends within groups.
2) If it's a group question, use the energy	Ex. 1) Explain why an atom of sodium is larger than an atom of lithium.
level explanation	The valence electron in Sodium occupies a higher energy level than the va-
3) If it's a period ques-	lence electron in Lithium. Since electrons in higher <i>energy levels</i> are farther
tion, use the Z_{eff} explanation.	from the nucleus, sodium must be a larger atom.
	Ex. 2) Explain why an atom of neon is smaller than an atom of argon.
	Ex. 3) Explain why an atom of sodium is larger than an atom of sulfur. Sodium has a lower <i>effective nuclear charge</i> ($Z_{eff} = 1$) than sulfur ($Z_{eff} = 6$). This
	means the valence electron in sodium experience a smaller Coulombic Attrac -
	tion towards the nucleus making sodium a larger atom.
	Ex. 4) Explain why an atom of carbon is smaller than an atom of beryllium.
	<u> </u>

4-10 Periodic Trends: The Why's of Ionization Energy

V	
	Explaining <i>why</i> atoms follow a trend is not the same as stating <i>what</i> the trend is. For example, if you were asked to explain <u>why</u> sodium has a smaller ionization energy than lithium and stated "sodium has a smaller ionization energy because the trend says ionization energies decrease down a group" would get you zero credit.
	Two factors are used to explain WHY atoms follow the trends:
	1) Coulombic attraction: used for explaining trends within period. (Z_{eff})
	2) Energy levels: uses for explaining trends within groups.
	Ex. 1) Explain why sodium has a smaller ionization energy than lithium.
	, , , , , , , , , , , , , , , , , , ,
	The valence electron in Sodium occupy a higher <i>energy level</i> than the valence electron in Lithium. Since electrons in higher <i>energy levels</i> are farther from
	the nucleus, they experience a lower <i>Coulombic Attraction</i> and require less en
	ergy to remove.
	Ex. 2) Explain why potassium has a higher ionization energy than cesium.
	Ex. 3) Explain why Carbon has a higher ionization energy than Lithium.
	Carbon has a higher <i>effective nuclear charge</i> ($Z_{eff} = 4$) than lithium ($Z_{eff} = 1$).
	This means the valence electrons in carbon experience a larger Coulombic
	Attraction towards the nucleus and require more energy to remove.
	Ex. 4) Explain gallium has a lower ionization energy than bromine.

4-11 Exceptions to Trends

Ø ()	
	Ex 1.) Oxygen has a lower ionization energy than nitrogen. This is contrary to what you have learned. Explain why this is true.
	contrary to what you have learned. Explain why this is true.
	Ex 2.) Boron has a lower ionization energy than beryllium. This is contrary to what you have learned. Explain why this is true.
	Contrary to what you have learned. Explain why this is true.

4-12 *Summary*